Search results for "Electro-optic modulator"
showing 6 items of 6 documents
All-organic electro-optic waveguide modulator comprising SU-8 and nonlinear optical polymer
2017
Institute of Solid State Physics, University of Latvia (SJZ/2016/26); Ministry of Education and Science, Republic of Latvia (MultIfunctional Materials and composItes, photonicS and nanotechnology (IMIS2)). We acknowledge Dr. Anatolijs Sarakovskis at Institute of Solid State Physics for the XPS measurements.
Compact Mach-Zehnder acousto-optic modulator
2006
The authors demonstrate a compact optical waveguide modulator based on a Mach-Zehnder interferometer driven by surface acoustic waves. The modulator was monolithically fabricated on GaAs with an active region length of approximately 15μm. It yields peak-to-peak modulation exceeding 90% of the average transmission and operation in the gigahertz frequency range.
On the performance of a linearized dual parallel Mach Zehnder electro-optic modulator
2014
The performance of a dual parallel differential Mach-Zehnder modulator broadband linearization architecture is analysed. This study provides experimental and analytical results showing an enhancement up to 20 dB in the 3rd-order intermodulation distortion factor at 5 GHz using RF and optical asymmetrical feeding factors.
Periodic time-domain modulation for the electrically tunable control of optical pulse train envelope and repetition rate multiplication
2012
An electrically tunable system for the control of optical pulse sequences is proposed and demonstrated. It is based on the use of an electrooptic modulator for periodic phase modulation followed by a dispersive device to obtain the temporal Talbot effect. The proposed configuration allows for repetition rate multiplication with different multiplication factors and with the simultaneous control of the pulse train envelope by simply changing the electrical signal driving the modulator. Simulated and experimental results for an input optical pulse train of 10 GHz are shown for different multiplication factors and envelope shapes. © 2006 IEEE.
Low-Power consumption Franz-Keldysh effect plasmonic modulator
2014
In this paper we report on a low energy consumption CMOS-compatible plasmonic modulator based on Franz-Keldysh effect in germanium on silicon. We performed integrated electro-optical simulations in order to optimize the main characteristics of the modulator. A 3.3 $dB$ extinction ratio for a 30 ${\mu}m$ long modulator is demonstrated under 3 $V$ bias voltage at an operation wavelength of 1647 $nm$. The estimated energy consumption is as low as 20 $fJ/bit$.
A CMOS-compatible Franz-Keldysh effect plasmonic modulator
2014
We present a design of an optimized CMOS-compatible germanium-on-silicon Franz-Keldysh effect plasmonic modulator. Its length is below 30 μm and the modulator operates at −3V. It features a power consumption as low as 20 fJ/bit.